Implementation of a Web-Based Diabetes Mellitus Prediction Information System
Keywords:
Diabetes Mellitus, Diabetes prediction, Stacking method, C4.5 algorithm, Support Vector Machine (SVM)Abstract
Design and development of a web-based diabetes prediction system utilizing a stacking method that combines the C4.5 algorithm and Support Vector Machine (SVM). Testing results indicate that the developed prediction model achieves an accuracy of 80%, with 8 out of 10 predictions matching the actual patient conditions, using a dataset from the national institute of diabetes and digestive and kidney diseases. After testing, the system was deployed and is accessible to users anytime and anywhere. Website access testing using Wireshark confirmed that data communication, including login information and prediction results, is securely encrypted. In addition to serving as a prediction tool, this system is equipped with additional features such as health tools, expert advice, and guidelines for diet and exercise, aiding users in managing their overall health.
Downloads
References
Agasta, B. R. P., & Saurina, N. (2024). Sistem integrasi rekam medis pada Klinik Dokter Deka Permadi berbasis web. Melek IT: Information Technology Journal, 10(1), 49-58.
Apriliyanti, R., Sari, A. A., & Noor, R. A. (2024). Kajian literatur: Adopsi artificial intelligence (AI) dalam bidang jurnalistik. Jurnal Teknologi Informasi, 10(1), 2-10.
Ardiansah, I., & Efatmi, F. (2022). Sistem pakar uji kelayakan perizinan pangan industri rumah tangga (P-IRT): Penggunaan metode forward chaining berbasis web pada industri kecil menengah (IKM). Cendekia Press.
Budianto, R. E., & Linawati, N. M. (2022). Potensi senyawa fitokimia pada tanaman dalam menurunkan kadar glukosa darah pada diabetes mellitus. Jurnal Penelitian Tanaman, 4(5), 549-554.
Fakhri, M. M., Fardan, M., Leo, M. A., & Hawari, M. D. (2023). Peningkatan kompetensi front-end web programming: Pelatihan bahasa pemrograman HTML dan CSS bagi mahasiswa. Jurnal Sipakatau: Inovasi Pengabdian Masyarakat, 1(1), 35-45.
Hasan, N. F., Kom, M., Wati, V., Kom, S., Kom, M., Sapulette, S. G., & Kom, M. (2023). Dasar analisa perancangan sistem informasi. Cendikia Mulia Mandiri.
Johnson, S., & Miller, D. (2020). Early symptoms of diabetes mellitus: A focus on recognizing diabetes mellitus early. Journal of Medical Research, 25(2), 123-135.
Karomah, B. M. (2022). Penerapan metode stacking dalam mengklasifikasikan penderita penyakit diabetes. Jupikom, 1(3), 1-7.
Lestari, Z., Zulkarnain, & Sijid, S. A. (2021). Diabetes mellitus: Review etiologi, patofisiologi, gejala, penyebab, cara pemeriksaan, cara pengobatan, dan cara pencegahan. Prosiding Biologi: Achieving the Sustainable Development Goals with Biodiversity in Confronting Climate Change, 2-5.
Maulana, N., Esmayanti, R., & Kurnia, N. M. (2024). Pengendalian komplikasi diabetes mellitus melalui program penataan diet pada penderita diabetes mellitus. Jurnal Diabetes, 1(1), 1-6.
Ningrum, A. S., & Utami, A. W. (2023). One-syllable Hangeul script handwriting detection system using convolutional neural network (CNN) method based on Flask framework. Journal of Emerging Information System and Business Intelligence (JEISBI), 4(4), 9-16.
Purnomo, W. (2023). Integrasi dan akses data multi-database menggunakan framework Laravel (Doctoral dissertation, Universitas Teknologi Digital Indonesia).
Rahmasari, I., & Wahyuni, E. S. (2019). Efektivitas Memordoca carantia (pare) terhadap penurunan kadar glukosa darah. Infokes, 9(1), 2-7.
Setiayoko, Y., Swanja, D., & Farida, I. N. (2023). Analisis implementasi port knocking dengan routing dinamis menggunakan protocol TCP dan ICMP di SMK PGRI 1 Nganjuk (Doctoral dissertation, Universitas Nusantara PGRI Kediri).
Silalahi, F. D. (2022). Manajemen database MySQL (Structured Query Language). Penerbit Yayasan Prima Agus Teknik.
Soelistijo, S. A., Novida, H., Rudijanto, A., Soewondo, P., Suastika, K., Manaf, A., & Salam, A. A. (2020). Prevalence of diabetes mellitus and its complications in Indonesia: A comprehensive literature review based on questionnaire survey studies conducted between 2008 and 2019. Journal of the ASEAN Federation of Endocrine Societies, 35(1), 79-94.
Susanto, K. A., Wijaya, D. R., Owen, M., Prasetya, T. R., Theodore, G. M., Russell, J., & Ningsih, R. Y. (2023). Implementasi bahasa Python dalam menganalisis pengaruh rokok terhadap risiko pasien terkena penyakit stroke. Jurnal Publikasi Teknik Informatika, 2(2), 48-58.
Vázquez Ingelmo, A., García Holgado, A., García Peñalvo, F. J., & Therón, R. (2020). A meta-model integration for supporting knowledge discovery in specific domains: A case study in healthcare. Journal of Computer Science, 12(1), 1-9.
Yanti, D. E., Framesti, L., & Desiani, A. (2023). Perbandingan algoritma C4.5 dan SVM dalam klasifikasi penyakit anemia. Jurnal Data Kesehatan, 9(4), 427-432.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Hillara Isfalana June, Vera Veronica, A. Abd. Jabbar (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.